Quantification of Multi-Element Nanoparticles in Environmental Samples Using Single Particle ICP-MS, with Arturo Keller at UCSB

Jenny Nelson

Studies with Arturo Keller

J Nanopart Res (2018) 20: 101 https://doi.org/10.1007/s11051-018-4192-8

RESEARCH PAPER

CrossMark

Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS

Arturo A. Keller · Yuxiong Huang · Jenny Nelson

Received: 17 January 2018 / Accepted: 14 March 2018 / Published online: 9 April 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Environmental Pollution

Research Paper | ENVPOL_2019_5954

Fast Multi-Element Quantification of Nanoparticles in Wastewater and Sludge Using Single Particle ICP-MS

Yuxiong Huang, Arturo Keller, Pabel Cervantes, Jenny Nelson Submitted 22 Oct 2019

Under Review 24 Oct 2019 🕐

Alert: keep me informed about the submission status for this manuscript

Mass Spectrometer used in our studies

7900 quadrupole ICP-MS – ultra-sensitive, ultra-fast 0.1 ms dwell

NP characterization

Single Particle ICP-MS (spICP-MS)

- Each nanoparticle gives a transient signal (a plume of ions generated from the particle)
- Use time resolved data acquisition and analysis
- Measure particle concentration, particle effective diameter and composition

What is sNP analysis?

> Sample Types for single nanoparticle analysis

*1 New sample types dedicated for sNP analsys.

*2 Usually with small amount of dissolved metal as an impurity.

Advanced operation – Multi-Element Screening

Sample prep: In case number of elements is 2+

Reference Material

Workflow for NP characterization

- Analyte response factor > Mass of analyte in particle
- Nebulization efficiency (calculated from reference material)
- Analyte density
- Analyte mass fraction in sample particle

Study 1

J Nanopart Res (2018) 20: 101 https://doi.org/10.1007/s11051-018-4192-8

Detection of nanoparticles in edible plant tissues exposed to nano-copper using single-particle ICP-MS

Arturo A. Keller · Yuxiong Huang · Jenny Nelson

Received: 17 January 2018 / Accepted: 14 March 2018 / Published online: 9 April 2018 © Springer Science+Business Media B.V., part of Springer Nature 2018

Arturo Keller

Yuxiong Huang

Application of ENMs in Agriculture

- Nano-pesticide/fungicide/bactericide
- Nano-fertilizer

Detect ENMs in leaf tissues via spICP-MS

Organic Vegetables

Collard Green (Lactuca sativa var. green leaf cultivar)

Kale (Brassica oleracea, var. Acephala Lacinato)

Leaf surface roughness

ESEM

Stomatal opening

Lettuce

Collard Green

Kale

A. A. Keller, Y. Huang, J. Nelson; *J. Nanoparticle Res.* **2018**, *20* (4), 101.

Expose Leaf to nano-CuO

Lettuce

2-hour air dry

Rinse Leaf with DI after nano-CuO exposure

Detect with spICP-MS

- Concentrations in first rinse around 500-750 $\mu\text{g/L}$
- Residual washable concentration after 2 rinses is less than 10 $\mu\text{g/L}$
- Leaf surface roughness may influence residual

Any nano-CuO within the leaf tissues?

Enzymatic digestion

Macerozyme R-10 enzyme

- Mixed with plant tissue samples to digest tissues and release nano-CuO
- 24 hr digestion
- Neutral pH to avoid digesting nano-CuO
- Filtration
- Analyze with spICP-MS

Lettuce

Collard Green

Kale

Yes! Leaf tissues retain ENMs

Study 2 with Arturo Keller

Environmental Pollution

Research Paper | ENVPOL_2019_5954

Fast Multi-Element Quantification of Nanoparticles in Wastewater and Sludge Using Single Particle ICP-MS Yuxiong Huang, Arturo Keller, Pabel Cervantes, Jenny Nelson Submitted 22 Oct 2019

Alert: keep me informed about the submission status for this manuscript

Arturo Keller

Yuxiong Huang

Pabel Cervantes-Avilés

Collecting NP samples in WWTP process

spICP-MS was used to monitor up to 16 elements simultaneously in water and wastewater samples

spICP-MS Measurement

Time resolved data for Au-containing NPs in sludge samples (A) as collected; (B) pre-centrifugation spiked with 60 nm Au NPs; and (C) post-centrifugation spiked with 60 nm Au NPs.

Size distribution of 60 nm Au NPs reference materials spiked at 100 ng/L detected in the retentate of activated waste sludge

spICP-MS Measurement

Ag NP size distribution in unspiked (A) influent; (B) post-primary; (C) waste sludge; (D) anaerobic sludge; and in spiked (E) influent; (F) post-primary; (G) waste sludge; (H) anaerobic sludge.

Mass concentration of NPs at different stages of wastewater treatment

(A) influent; (B) post-primary; (C)secondary effluent; (D) reclaimed water;and in spiked (E) waste sludge; (F)anaerobic sludge.

Conclusions

- You need to read the papers to get the entire spICPMS NPs story for both studies
- spICP-MS offers an excellent approach for quantitative analysis of nanoparticles
- spICPMS provides concentration, size distribution, composition, dissolved ion concentration
- Can be applied to water and wastewater samples
- Challenges remain with regards to samples that contain high levels of natural NPs

Acknowledgments ARTURO KELLER

Yuxiong Huang, now Prof. at TBSI @ Shenzen Pabel Cervantes, postdoc at UCSB Adeyemi S Adeleye, now Prof. at UCI Tarun Anumol, Agilent Technologies

Agilent Technologies

